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Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

-
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Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

L =
Examples:

- O1(z) = 1if z is a true statement about numbers,
O1(x) = 0 otherwise.
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Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

-

Examples:
= (’)1( ) = 1if z is a true statement about numbers,
O1(x) = 0 otherwise.
- O5(x) = 1if z is a satisfiable boolean formula,
Oz(x) = 0 otherwise.
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Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

L =
Examples:

- O1(z) = 1if z is a true statement about numbers,
O1(x) = 0 otherwise.

- O5(x) = 1if z is a satisfiable boolean formula,
Oz(x) = 0 otherwise.
... Oracles can be used to add computational power.
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Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

L =
Examples:

- O1(z) = 1if z is a true statement about numbers,
O1(x) = 0 otherwise.

- O5(x) = 1if z is a satisfiable boolean formula,
Oz(x) = 0 otherwise.
... Oracles can be used to add computational power.

- O3(x) computes an unknown parity of .
Determine the parity.
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Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

L =
Examples:

- O1(z) = 1if z is a true statement about numbers,
O1(x) = 0 otherwise.

- O(x) = 1if z is a satisfiable boolean formula,
Oy(x) = 0 otherwise.
... Oracles can be used to add computational power.

- O3(x) computes an unknown parity of .
Determine the parity.
... Oracles can act as black boxes to be analyzed.
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(o110) = (1,1,1,1)(0,1,1,0)T
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(o110) = (1,1,1,1)(0,1,1,0)Y =2 mod 2 = 0
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)%
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)1 =3 mod 2 =1
... computations with 0-1 entities are modulo 2.
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:
Po,1,0,1(0110) = (0,1,0,1)(0, 1, 1,0)"
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:
P(O,l,O,l)(OllO) — (0, 1, O, 1)(0, 1, 1, O)T =1lmod2=1
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.
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Examples:
P1,1,1,0)(0110) = (1,1,1,0)(0, 1, 1,0)*
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.

Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:

Py(s)=p-s
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s is the number of 1’s in s modulo 2.

Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:

Py(s)=p-s

e A parity oracle. S - S

How many “gueries” does it take to learn p?
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:

Py(s)=p-s

e A parity oracle. (a,b)T )"

(p1,p2)(a,b

How many “gueries” does it take to learn p?
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.

Examples:
Pp(s)=p-s
o A parity oracle. (4 p) (p1,p2)(a,b)
(1,0)

T a.b T
T (plap2)(170)T — D1

How many “gueries” does it take to learn p?
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Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:

Pp(s)=p-s
* A parity oracle. (, p)T (p1,p2)(a,b)T
(1,0)F (p1,p2)(1,0)" = p
(0, 1)t (p1,p2)(0,1)" = py

How many “gueries” does it take to learn p?

2



Reversible Oracles

e Reversible oracles add the answer to a register.

X X

b+ O(x)
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Reversible Oracles

e Reversible oracles add the answer to a register.

X X

b b+ O(x)

o Simulation, using a standard oracle.

X
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Reversible Oracles

e Reversible oracles add the answer to a register.

X X

b

b+ O(x)

o Simulation, using a standard oracle.

X

b b+ O(b)
e |s the simulation equivalent to a reversible oracle?
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Quantum Oracles

e A Quantum Oracle is the linear extension of a
classical reversible oracle.

Zx,b aiﬁ,b|x>l|b>o \

v

\

b D z,b Qap|T)b 4 O(2) )
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Quantum Oracles

e A Quantum Oracle is the linear extension of a

classical reversible oracle.

( )

2 b Q| T)[b)y 4 Dz Qb T) [0+ O(2)),

e Quantum oracles versus classical reversible oracles?
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Quantum Oracles

e A Quantum Oracle is the linear extension of a

classical reversible oracle.
(

2 b Q| T) (bl 4 Dz Qb T) [0+ O(2)),

e Quantum oracles versus classical reversible oracles?

- Does it help to use a quantum computer to
analyze a classical reversible oracle?
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def - +) = 5(l0) + 1))
. - 1) = 5o — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

[+l
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.
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1. Parity and the Hadamard basis. =)= (lo) = 11))
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def {|+> $(|0>+|1>)
1. Parity and the Hadamard basis. =)= (lo) = 11))
- Which logical states |ab), . have a minus sign in
R R TR RN E SRR N o
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def - +) = 5(l0) + 1))
. - 1) = 5o — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

N P RN e S e Nl TR N X

Ans.. States with odd parity w.r.t. the |—)-qubits.
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def - +) = 5(l0) + 1))
. - 1) = 5o — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

N P RN e S e Nl TR N X

Ans.. States with odd parity w.r.t. the |—)-qubits.

- Are these states distinguishable?
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
1. Parity and the Hadamard basis.

- {|+> = 25(lo) + 1))

L
=) = (o) — 1))

- Which logical states |ab), . have a minus sign in

AR T 0 N i PR RN RS Sl

>A|_>B?

Ans.. States with odd parity w.r.t. the |—)-qubits.

- Are these states distinguishable?

+>A_|E|_
+>B_|E|_

Product state convention:

N

O}

Multiply states associated with different qubit lines.
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def - +) = 5(l0) + 1))
. - 1) = 5o — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

N P RN e S e Nl TR N X

Ans.. States with odd parity w.r.t. the |—)-qubits.

- Are these states distinguishable?

+>A_|EI_ O>A
e H
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def - +) = 5(l0) + 1))
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- Which logical states |ab), . have a minus sign in

N P RN e S e Nl TR N X

Ans.. States with odd parity w.r.t. the |—)-qubits.

- Are these states distinguishable?

5
—|Top|Bot|—|—|TOC



The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def.- +) = 5(l0) + 1))
. - 1) = 5lo) — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

N T RN e P e A T e N X

Ans.. States with odd parity w.r.t. the |—)-qubits.

- Are these states distinguishable?
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.
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The Quantum Parity Problem

Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

)

o+ O(x)),
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The Quantum Parity Problem

Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

)

{|a>o f O(a)

0
notla), ifO(x) =1
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

7310+ 1) e Py 7 [0}, + 1))
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

V3(10h — 1) e P 5[0} = 1)
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

|—>O+—|—>O

|—) Is an eigenstate of not with eigenvalue —1.
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

|—) is an eigenstate of not with eigenvalue —1.
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

|—) Is an eigenstate of not with eigenvalue —1.
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution In two tricks.
1.&2. |(_)p1>A|(_)pz>B
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution In two tricks.
1.&2. |(_)p1>A|(_)pz>B

|_>o
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The Quantum Parity Problem
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution In two tricks.
1.&2. |(_)p1>A|(_)pz>B
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution In two tricks.
1.&2. |(_)p1>A|(_)pz>B

One gquery suffices for solving the n-qubit parity problem.
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The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution In two tricks.
1.&2. |(_)p1>A|(_)pz>B

One gquery suffices for solving the n-qubit parity problem.

. . . hote use of “quantum parallelism”.
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Summary of Gates Introduced So Far

Gate picture Symbol Matrix form
% pI‘ep(O)
meas(Z—b)
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Summary of Gates Introduced So Far

Gate picture Symbol Matrix form

9— prep(o)
meas(Z—b)
not ((1) (1))

—p—
_®_ sgn ((1) _01>
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Summary of Gates Introduced So Far

Gate picture Symbol Matrix form
% pI‘ep(O)

meas(Z—b)
—@— | e (0 %)
= | ha s004)
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Summary of Gates Introduced So Far

Gate picture Symbol Matrix form

9— prep(o)
meas(Z+—b)
—@— not ((1) (1))
_®_ sgn (
—{H =

1
0
1 1
had % (1 _1)

A 1 0
| (AB) 0 1

B cnot 0 0
0 O
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Summary of Gates Introduced So Far

Gate picture Symbol Matrix form
% prep(O)
meas(Z+—b)
0 1
1 0
% Sgn (O _1>
(11
ey B had 5004
|00), 5 [01),5 [10) g [11),5
A o/ 1T 0 0 0
(AB) o), O 1 O 0
B ; cnot Wl 000 0 1
w\ 0 0 1 0




Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
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Only real coefficients.
U? = 1.
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

e e o] e
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —

Error effect determination.

_E_
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..
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Applications: Network rearrangements.

%u“v U | —

Error effect determination.
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —

Error effect determination.
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —

Error effect determination.

—{# = —S—nF
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —

Error effect determination.

e > 15
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.
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Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > —(X)—
sgn and not: not !.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had ™ '.sgn.had = not, had '.not.had = sgn.

sgn and not conjugated by cnot.

—1
cnot™®  not®.cnot™® = not(B>,
—1
cnot”™? .sgn(A).cnot(AB) = sgn(A),
—1
cnot™  not”.cnot"® = not(A>.not<B),

(B)

'.cnot?? = sgn<A) .Sgn

cnot™? .sgn(B
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Preservation of Products of “Flips”

Products of not and sgn are preserved under conjugation
by operators composed of cnot’s and had’s.
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Preservation of Products of “Flips”

Products of not and sgn are preserved under conjugation
by operators composed of cnot’s and had’s.

U—l
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o
b a4

- What is the power of this gate set?
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Physically Allowed Reversible Operators

Define an operator U by linear extension of
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Physically Allowed Reversible Operators

Define an operator U by linear extension of
Ulzy = >, tyz|y)
To be well-defined, U|z). must be a state:
Zy [uye|? = 1.
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Physically Allowed Reversible Operators

Define an operator U by linear extension of

To be well-defined, U|z). must be a state:

Zy [uye|? =1
U’s linear extension must preserve states.
Consider U—(|z), + €'?z}) = 32, —5(uye + € Puyz:)ly).
1 =2, §|uyfc + e Puy, |

— Zy %(’uwa + ’uyZ‘z + 6i¢aywuyz + e_wuywﬂyZ)
= 1+2) Re(eii, u,,)
= 1+ 2Re(e* D 2y Uyatyz).

Hence } _ tyzuy. = 0.
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To be well-defined, U|z). must be a state:
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Hence » _, uyxuyz = 0.
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Physically Allowed Reversible Operators

Define an operator U by linear extension of
To be well-defined, U|z). must be a state:

Zy |uy33|2 = 1
U’s linear extension must preserve states.
Consider U ~(|z) + e'?)z)) = y \}i(uyaj + e"Puy, )|y

Hence » _, uyxuyz = 0.

e U is unitary. In matrix form with z € {1,2,..., N }:
Ut U 1
U11 U921 c.. UN1 U111 U192 U1N 1 0 ... O
’1_1,12 ’17,22 ﬂNQ U921 U929 . .. U2 N _ O 1 O
UIN U2N UNN UN1 UN?2 UNN 0 O 1
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Physically Allowed Reversible Operators

Define an operator U by linear extension of
To be well-defined, U|z). must be a state:

Zy |uy33|2 = 1
U’s linear extension must preserve states.
Consider U ~(|z) + e'?)z)) = y \}i(uyaj + e"Puy, )|y

Hence ), uyxuyz = 0.

e U is unitary. In matrix form with z € {1,2,..., N }:
oAl U 1
U11 U921 c.. UN1 U111 U192 U1N 1 0 ... O
U1z  U22 UN2 U21 U2 ... U2N _ 0 1 0
UIN  U2N UNN UN1  UN?2 UNN 0 O 1
e Should every unitary operator be implementable?
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e A set of gates Is universal if every unitary n-qubit operator
can be implemented with a network.
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Allow use of ancillas and measurements.
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Universality for Gate Sets

e Should every unitary operator be implementable?

e A set of gates Is universal if every unitary n-qubit operator
can be implemented with a network.

U

Other notions of universality:
Allow use of ancillas and measurements.
Allow approximation to within arbitrarily small error.
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Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
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e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.
The Toffoli gate: c2not™®® = if A&Bthen not".

A
B

C

14
—|Top|Bot|—|—|TOC



Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: ¢2not™®” = if A&B then not'“.
A
1), 1),
1) B 1)
o) G 1)

14
—|Top|Bot|—|—|TOC



Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: ¢2not™®” = if A&B then not'“.
A
1), 1),
1) B 1)
1) G 0).

14
—|Top|Bot|—|—|TOC



Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: c2not™®® = if A&Bthen not".
( A )
jabe) o < E > lab(c+a- b))
\ C /

14
—|Top|Bot|—|—|TOC



Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: c2not™®® = if A&Bthen not".
( A )
jabe) o < E > lab(c+a- b))
\ C /

Discreteness: Finite gate sets are preferred.

14
—|Top|Bot|—|—|TOC



Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: c2not™®® = if A&Bthen not".
( A )
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\ C /

Discreteness: Finite gate sets are preferred.

Fault tolerance: Elementary gates should be
experimentally verifiable and readily made stable.

14
—|Top|Bot|—|—|TOC



Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: c2not™®® = if A&Bthen not".
( A )
jabc) o < E > lab(c+a- b))
\ C /

Discreteness: Finite gate sets are preferred.

Fault tolerance: Elementary gates should be
experimentally verifiable and readily made stable.

... but do investigate other gate sets.
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